If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2+441=0
a = -9; b = 0; c = +441;
Δ = b2-4ac
Δ = 02-4·(-9)·441
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*-9}=\frac{-126}{-18} =+7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*-9}=\frac{126}{-18} =-7 $
| 5(-6-3d)=3(8+7d | | 2.50-13/3h=13 | | 3(x-8)^2=27 | | X+1=5x-27 | | 300+6x=1200-6x | | (x-4)^2=-15 | | (2x-7)^2=0 | | 7y-4=-3y+9 | | 5-2x=x-25 | | 21-(m+4)=6(2m-5);m=4 | | 7n-21=7(3n+1) | | (v+5)^2=4 | | 0.99x-10=10+0.89x | | 2(2x–4)+3(x–1)=1–3(-2x–4) | | m^2-12=109 | | 5v+11=511 | | -2/3(2x+5)+2x=2/3 | | 8(2+6)=x+4 | | -9q-(-3q+3)=6q-14 | | x-2x=180 | | (x−18)+(3x+16)=18 | | x2+2-18=0 | | (x−18)+(3x+16)=180 | | 53+10x=183 | | -17+5=-3(x+1) | | -6y-23=7(y+6) | | 35-21=21-p | | 1+5(7+5x)=12x+5x | | (x/5)+3=-15 | | 94=21+5x | | 3(x+2)=2x-10 | | (2x+32)+(3x+93)=180 |